3 resultados para T cell receptor

em Universidade Complutense de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The population of naive T cells in the periphery is best described by determining both its T cell receptor diversity, or number of clonotypes, and the sizes of its clonal subsets. In this paper, we make use of a previously introduced mathematical model of naive T cell homeostasis, to study the fate and potential of naive T cell clonotypes in the periphery. This is achieved by the introduction of several new stochastic descriptors for a given naive T cell clonotype, such as its maximum clonal size, the time to reach this maximum, the number of proliferation events required to reach this maximum, the rate of contraction of the clonotype during its way to extinction, as well as the time to a given number of proliferation events. Our results show that two fates can be identified for the dynamics of the clonotype: extinction in the short-term if the clonotype experiences too hostile a peripheral environment, or establishment in the periphery in the long-term. In this second case the probability mass function for the maximum clonal size is bimodal, with one mode near one and the other mode far away from it. Our model also indicates that the fate of a recent thymic emigrant (RTE) during its journey in the periphery has a clear stochastic component, where the probability of extinction cannot be neglected, even in a friendly but competitive environment. On the other hand, a greater deterministic behaviour can be expected in the potential size of the clonotype seeded by the RTE in the long-term, once it escapes extinction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TCR/CD3 (αβTCRand γδTCR) complexes are members of a family of modular biosensors that are responsible for driving T-cell development, activation, and effector functions. They inform essential checkpoint decisions by relaying key information from their ligand-binding modules (TCR chains) to their signaling modules (CD3γε, CD3δε and CD3ζζ) and onto the intracellular signaling apparatus. Their actions shape the T-cell repertoire, as well as T-cell-mediated immunity; yet, the mechanisms that underlie their activity are still to be precisely determined. As with any molecular machine, understanding how they function depends critically on dissecting how their parts fit and work together. T-cell receptor immunodeficiencies (TCRID) are low-prevalence autosomal recessive diseases characterized by impaired surface TCR expression, frequently associated with peripheral blood T lymphocytopenia, severe combined ID (SCID) and (or) autoimmune symptoms, but not associated with B or natural killer (NK) lymphocytopenia. Several CD3, CD247, and TCR deficiencies have been described which can be classified as complete or partial according to the absence or presence of residual levels of the affected protein. Although rare and sometimes based on single cases, TCRID offer rich information about the underpinnings of human TCR structure and function, which in turn impact our understanding of T-cell development and function... NOTA 520 8 Las inmunodeficiencias humanas del receptor de antígeno de los linfocitos T (TCR) son enfermedades autosómicas recesivas con baja prevalencia, caracterizadas por un defecto de expresión del TCR asociado a una linfopenia T selectiva. La ausencia congénita de componentes del TCR tiene un impacto diferencial en el desarrollo y función de los linfocitos T, que depende de la cadena del TCR afectada y de la especie, siendo en algunos casos diferente en los pacientes humanos en comparación con los modelos en ratones. Las inmunodeficiencias del TCR han sido ampliamente estudiadas, en particular las de las sub-unidades CD3 del complejo receptor. En contraste, hasta ahora es muy poca la atención que se le ha prestado a los potenciales efectos de la haploinsuficiencia de componentes del TCR en el desarrollo, fenotipo y función de los linfocitos T. Esto es debido en gran parte al hecho de que los individuos haploinsuficientes (portadores de mutaciones nulas en heterocigosis) no presentan alteraciones obvias de la inmunidad mediada por células T o signos de enfermedad. En este trabajo se analiza por primera vez, en humanos y modelos de ratones, el impacto de la haploinsuficiencia de CD3 y CD3 en la expresión y funcionalidad del TCR, y su potencial relevancia en el desarrollo y función de los linfocitos T. Los resultados indican que la haploinsuficiencia de CD3 y, en menor medida, la de CD3causa una disminución en la expresión del TCR en la superficie de las células T y T, y provoca alteraciones claras en el desarrollo y función de los linfocitos T en ambas especies...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Anaplasma phagocytophilum infects a wide variety of hosts and causes granulocytic anaplasmosis in humans, horses and dogs and tick-borne fever in ruminants. Infection with A. phagocytophilum results in the modification of host gene expression and immune response. The objective of this research was to characterize gene expression in pigs (Sus scrofa) naturally and experimentally infected with A. phagocytophilum trying to identify mechanisms that help to explain low infection prevalence in this species. RESULTS For gene expression analysis in naturally infected pigs, microarray hybridization was used. The expression of differentially expressed immune response genes was analyzed by real-time RT-PCR in naturally and experimentally infected pigs. Results suggested that A. phagocytophilum infection affected cytoskeleton rearrangement and increased both innate and adaptive immune responses by up regulation of interleukin 1 receptor accessory protein-like 1 (IL1RAPL1), T-cell receptor alpha chain (TCR-alpha), thrombospondin 4 (TSP-4) and Gap junction protein alpha 1 (GJA1) genes. Higher serum levels of IL-1 beta, IL-8 and TNF-alpha in infected pigs when compared to controls supported data obtained at the mRNA level. CONCLUSIONS These results suggested that pigs are susceptible to A. phagocytophilum but control infection, particularly through activation of innate immune responses, phagocytosis and autophagy. This fact may account for the low infection prevalence detected in pigs in some regions and thus their low or no impact as a reservoir host for this pathogen. These results advanced our understanding of the molecular mechanisms at the host-pathogen interface and suggested a role for newly reported genes in the protection of pigs against A. phagocytophilum.